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Hybrid Electric Vehicles (HEVs) are becoming more popular than pure electric ones, nowadays. This is
because of their better performance, economic advantages and higher operating range. However, their
potential advantages extremely depend on their system design, most importantly their battery system
design. Batteries’ life requirements as well as the cost of replacing them at the end of their life period,
currently limit manufacturers to bring HEVs into play, even though their fuel economy reduces their
everyday cost considerably. Generally, inappropriate discharge/charge patterns would result in loss in
ybrid electric vehicle
attery life
ontrol strategy
ower losses
enetic algorithm

batteries’ life. In the present study, an optimization based control strategy has been proposed for the
series HEVs in order to maximize the efficiency of the power-train while minimizing the loss. A genetic
algorithm is implemented to optimally evaluate the control algorithm’s parameters. The approach is
then compared to two main control strategies, namely thermostatic control strategy and power follower
control strategy. The computational procedure of the genetic algorithm is discussed, and a simulation
study based on a model of a series hybrid electric vehicle is given to validate the genetic algorithm

results.

. Introduction

Hybrid Electric Vehicles (HEVs) have great capabilities as new
lternative means of transportation. The advantages of HEVs over
he conventional vehicles are mainly improved fuel economy and
educed emissions. In a series HEV, traction force is provided only
y an electric motor. The driving power for this motor comes from
bidirectional storage system (e.g., battery, flywheel, or ultra-

apacitor) and an engine-generator set (Genset). Now, the question
s how to distribute the required power for the electric motor
etween the batteries and the Genset. The answer is provided by
he control strategy that is being adopted. A control strategy is an
lgorithm regulating the operation of the drive-train. It takes data
rom the vehicle (e.g., speed, acceleration and grade) and makes
ecisions to turn on/off certain components or to increase/decrease
heir power output [1].
Not many approaches exist in literature for the control strat-
gy of series HEVs. Different methods of optimal control have been
sed in these papers to minimize the fuel consumption or emis-
ion. Among them, we can refer to Refs. [2,3]. Other studies, e.g.,
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Refs. [4,5], have considered the internal battery losses empirically
or as an average value.

Nevertheless, the batteries performance and life length have
not been addressed in most proposed algorithms. In order to
reduce the costs associated with loss of life cycle in batteries,
their charge/discharge patterns have to be managed. For this pur-
pose, it has been recommended to avoid deep discharging and
frequent charging, since this will cause the batteries life to dete-
riorate dramatically. The main objective of this paper is to propose
an algorithm by which the demanded power (from the main vehicle
controller) gets distributed between the batteries and the Genset
in such a way that the batteries’ life losses are as low as possi-
ble. Besides, in the proposed control strategy, the factors reducing
the battery life such as deep discharge and frequent charging are
avoided. This looks like solving an optimization problem for min-
imizing of the fuel consumption with the battery life expectation
constraint. The method will be verified by simulation.

The vehicle under-study which is used for current investigations
is the O457 bus which has been converted to a series hybrid vehi-
cle at Vehicle, Fuel and Environment (VFE) Research Institute at

University of Tehran.

The proposed algorithm relies on parameters that characterize
the driving schedule and is also flexible to unexpected changes
in the driving situation. The layout of this paper is as follows. In
Section 2, the series HEV model and power losses due to each com-

http://www.sciencedirect.com/science/journal/03787753
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Nomenclature

SoC battery state of charge
DoD battery depth of discharge
Ri battery internal resistance (�)
Ib battery current (A)
Pb battery power (W)
Ub battery voltage (V)
U0 initial capacitor voltage (V)
Pd drive power (W)
Pe/g Genset power (W)
P∗

e/g desired Genset power (W)
a0, a1, a2 parameters of Genset efficiency curve
DR DOD for which rated cycle life was determined
CR rated ampere-hours capacity at rated discharge cur-

rent IR (Ah)
LR cycle life at rated DOD, DR and discharge current IR

(Ah)
DA, CA actual value of DR and CR
u0, u1, u2 parameters of cell cycle life curve
Ltime life time (s)
dactual actual absolute discharge
deff effective discharge
Peff effective discharge power (W)
Pb/loss power losses of battery (W)
Pbus bus power (W)
HSoC higher value of SoC
LSoC lower value of SoC
tmoff shortest allowed duration of engine off time
Poff power below which engine is shut off if the batteries

are charged

Greek symbols

p
a
4
p
S

�gen efficiency of generator
�ICE efficiency of ICE
� R rated charge life (Ah)
onent have been introduced. The optimization problem definition
nd control algorithm have been explained in Section 3. In Section
, results from the developed control strategy have been com-
ared to the common control strategy. Conclusions are presented in
ection 5.

Fig. 1. General arrangem
ources 190 (2009) 372–379 373

2. System components

The series HEV power-train is composed of an engine/generator
set (Genset), an electric traction motor with a power converter, and
a battery pack with an appropriate controller. In addition, there is a
central controller that manages the interaction between these com-
ponents, as shown in Fig. 1. The output of the generator is connected
to an electric power bus through a Power Conditioner (PC). The bat-
tery pack serves as the bidirectional electrochemical energy source
which is connected to the bus by means of a power electronic con-
verter (DC/DC converter). The electric power bus is also connected
to the controller of the electric traction motor. The traction motor
can be controlled either as a motor or a generator, and either in
forward or reverse motion.

To study the optimization algorithm by which the parameters
of the control strategy are determined, the model of a series hybrid
electric vehicle was built. This model enables us to calculate the flow
of power among different components of the drive-train. Accuracy
of the model is of course the main concern, but as long as consistent
behavior is seen, a few percents of error in the fuel consumption or
battery losses are tolerated.

2.1. Genset

The Genset provides one part of the power that is required by the
electric traction motor for propulsion. As proposed in Ref. [4], the
convex second degree polynomial of Genset’s power can represent
the efficiency curves at different speeds, as follows (Fig. 2):

�ICE = a0 + a1Pe/g + a2P2
e/g (1)

where Pe/g is the mechanical power on the Genset output shaft
and �ICE denotes the Internal Combustion Engine (ICE) thermal
efficiency. The generator efficiency map is depicted in Fig. 3. The
reference engine speed is obtained from the efficiency/power map
to optimize the efficiency at the requested power. Then the ICE
controller regulates the engine shaft speed to follow the reference
value, as shown in Fig. 4.
2.2. Battery pack

The battery pack is an energy source just like a fuel tank. How-
ever, its high cost, low energy storage density and shorter life often

ent of a series HEV.
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Fig. 2. Qualitative efficiency of the ICE. The specific consumption curves, obtained from the engine efficiency maps have the qualitative behavior of the left graph, one curve
for each rotational speed. To ensure the best efficiency for each value of the desired power of Genset, the ICE should vary its speed so as to follow the envelope of such curves,
as shown in the right graph.
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which rated cycle life was determined, and LR represents the cycle
life at rated DoD, DR and discharge current IR.

The actual charge life (cumulative effective ampere-hour) of a
Fig. 3. Efficiency map of the generator.

akes the battery pack the weakest chain ring in the drive-train
6].

Batteries are expensive items. The cost for a certain storage
apacity can vary from 100 to 900 $ kW−1 h−1 or even higher [7].
nlike the fuel tank, batteries might not last for the whole life span
f the vehicle and their condition usually deteriorates over their life
s well. The life of a battery is measured in cycles or years for cyclic
pplications (like in HEVs). The cycle life of batteries is between 300
nd 1500 full cycles, depending on the battery type.

In order to prolong batteries’ life, different factors of their oper-

tion can be taken into account. However, the first step towards
chieving this goal is to implement a proper life prediction method
or them. The method used in this paper is similar to the method
eported in Ref. [6]. Each battery cell has a finite life as measured by

ig. 4. Control arrangement to adjust the shaft speed to the requested output power.
he ICE should operate so that it follows the minimum consumption curve by varying
ts rotational speed between the minimum and maximum allowed when following
he required power P∗

e/g
.

Fig. 5. Best fit curve to battery manufacturer’s cycle life data.

the sum of the effective ampere-hour during its useful life. When
the cumulative effective ampere-hour (the total of the individ-
ual effective ampere-hour corresponding to a series of discharge
events) equal the rated charge life of the cell, the cell will reach its
useful life. The rated charge life, � R, of a cell is defined as:

�R = LRDRCR (2)

where, CR is the rated Ampere-hour capacity at rated discharge cur-
rent I . Besides, D stands for the Depth of Discharge (DoD) for
cell, is a function of its DoD. To determine this relationship, the

Fig. 6. Actual capacity versus discharge current for a 68 Ah valve regulated lead acid
battery.



M. Amiri et al. / Journal of Power Sources 190 (2009) 372–379 375

F
s

f

L

c
o
p

c
e

d

i
s

i

d

I
s
a
r
d

t
u
e
a
p

L

f

P

T
R

B
B
R
N
C
C
C
E
E
E

Table 2
Description of control strategy parameters used in optimization.

Optimization variable Description

HSoC Highest desired battery SoC
LSoC Lowest desired battery SoC
P Power below which engine is shut off if the batteries

The principles of multi-objective optimization are different
from that of a single-objective optimization. The main goal in a
single-objective optimization is to find the global optimal solu-
tion. However, in a multi-objective optimization problem, there
ig. 7. Battery equivalent circuit utilized in the paper for modeling of the energy
torage system.

ollowing equation is proposed:

= u2

(
DR

D

)u0
eu1(1−(D/DR)) (3)

Fig. 5, shows the best fitted curve to a set of four data points:
ycle life versus DoD which can be provided by the manufacturer
f a lead-acid battery, based on Eq. (3). For the provided battery, the
arameters in Eq. (3) are obtained as u0 = 0.1, u1 = 1.69 and u2 = 765.

It is assumed that for a given actual discharge, the effective dis-
harge deff, will increase with discharge rate and can be roughly
xpressed by the following function:

eff = CR

CA
dactual (4)

n which, CA can be obtained easily from the manufacturer’s data
uch as the one shown in Fig. 6.

The effects of discharge rates are combined simply by multiply-
ng the factors expressed in Eqs. (3) and (4).

eff =
(

DA

DR

)u0
eu1((DA/DR)−1) CR

CA
dactual (5)

t should be noted that Eq. (5) expresses the effective discharge for a
ingle discharge of specific magnitude and rate. A life prediction for
cell subjected to an irregular pattern of charge–discharge cycles

equires the summation of the effective discharges from a series of
ischarge events.

The discharge profile can be obtained by actually monitoring of
he battery current on an operating system, or by modeling battery’s
sage on a proposed system. The prescribed series of n discharge
vents will correspond to a certain time period (T) of system’s oper-
tion. The life time (Ltime) of the cell under the specified usage
attern is then given by:

time = �R

�eff/T
= LRDRCR∑n

i=1deff
T (6)
In order to formulate the battery losses that reduce its life, the
ollowing equation can be employed:

eff =
(

CR

CA

)1−u0(CR

CA
− 1

)u0

e−u1(CA/CR)RI2
b (7)

able 1
elevant battery data used in simulation of the HEV.

attery rated capacity (CR) 68 Ah
attery internal resistance R 0.5 m�
ated DOD 0.8
umber of battery module 54
ycle life curve: u0 0.19
ycle life curve: u1 1.69
ycle life curve: u2 765
fficiency curve: a0 0.3520
fficiency curve: a1 0.0025 kW−1

fficiency curve: a2 −0.0001 kW−2
off

are charged
Pch Power applied to engine to charge the batteries
tmoff Shortest allowed duration of engine off time

Therefore, the total power losses of the battery are obtained as:

Pb/loss = RI2
b + Peff = (1 + M)RI2

b (8)

where,

M =
(

CR

CA

)1−u0(CR

CA
− 1

)u0

e−u1(CA/CR) (9)

and, RI2
b is the losses caused by internal resistance and Peff is the

battery losses reducing the battery life.
A dynamical model for the lead-acid battery should be obtained

for the purpose of minimization [8]. Battery modeling is of major
concern in the overall HEV model development. Studies have been
made to model the power output for batteries in various approaches
[9,10]. A simple model represented in Fig. 7, as an equivalent elec-
trical circuit, is considered for modeling of the battery. Battery
parameters which are used for modeling are depicted in Table 1.
This model has successfully been used for lead-acid batteries [9].

It should be noted that both the internal resistance and the
electromotive force are not constants during the charge/discharge
processes and vary as a function of the State of Charge (SoC) and
electrolyte temperature. For simplicity, these dependencies are
assumed to be linear.

3. Evolutionary design of the control strategy

Genetic algorithm (GA) used in this paper as the evolutionary
algorithm is motivated by the mechanism of natural selection, a
biological process in which fitter individuals have higher ability to
survive during evolution.
Fig. 8. Tehran city bus driving schedule used in simulation for testing the algorithm.
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Table 3
Relevant vehicle and component data used in series hybrid electric vehicle model.

Vehicle Vehicle mass: 9100 kg
27 × 70 kg (according to SAE 931788)
Front area: 7.23 m2

Rolling resistance coef.: 0.008
Aerodynamic coef.: 0.79

Engine 6.8 L CI, 170 kW/2200 rpm

Electric motor Rated power: 170 kW
Max. power: 300 kW
Max. torque: 1000 Nm at 500 A
Peak efficiency: 94.1%

PM Generator Rated power: 105 kW
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Table 4
Comparison of main parameters obtained from optimization and equivalent value
of them in thermostatic control strategy.

Parameters Developed control strategy Thermostatic

HSoC 0.915 0.8
LSoC 0.35 0.3
Poff 35 kW 75 kW
Pch 28 kW 0
tmoff 355 ∞

Table 5
Minimum requirements of road performance based on previous version of O457 city.
Max. power: 160 kW
Max. torque: 450 Nm at 250 A
Peak efficiency: 95.2%

s more than one objective function, each of which may have a
ifferent individual optimal solution. If there is sufficient differ-
nce in the optimal solutions corresponding to different objectives,
he objective functions are often known as being conflicting
o each other. Multi-objective optimization with such conflict-
ng objective functions gives rise to a set of optimal solutions,
nstead of one optimal solution. The reason for the optimal-
ty of many solutions is that no solution can be considered to
e better than the other with respect to all objective functions.
hese optimal solutions have a special name—Pareto-optimal solu-
ions.

It is clear that the concept of optimality in multi-objective opti-
ization deals with a number (or a set) of solutions, instead of one

olution. Based on the above discussions, the conditions for a solu-
ion to become dominated with respect to another solution and
hen present conditions for a set of solutions to become a Pareto-
ptimal set are defined.

Let us assume that the set of variables xi, i = 1,. . ., M, is a set
f decision variables for a multi-objective optimization problem. In
rder to measure the decency of a certain solution, some criteria for
valuating the solution quality should be defined. These criteria are
xpressed as a set of functions f1(x),. . ., fj(x),. . ., fP(x) of the decision
ariables, which are called objective functions. Oftentimes, some
f them are contradicting with others. The constraints specify the
easible region X in which any point x defines a feasible solution.
t is impossible that all of the fj(x), j = 1,. . ., P values have an opti-

um in X at a common point x. Certain criteria should be developed
o determine an optimal solution in this circumstance. One inter-

retation of the term optimum in the multi-objective optimization
cenarios is the Pareto-optimality, which are highly associated with
he concept of dominance. A solution x1 dominates a solution x2 if
nd only if the two following conditions are satisfied at the same

ig. 9. Illustration of thermostat control strategy. When the SoC of the battery
eaches its preset top line, the Genset is turned off and will be turned on when
he SoC of the battery reaches its bottom line.
Max vehicle speed (km h−1) 110
Max vehicle speed at 6% grade (km h−1) 85
Time to accelerate from 0 to 100 km h−1 (s) 35

time: firstly, x1 is no worse than x2 in all objective evaluations, i.e.,
fj(x1) ≤ fj(x2) for all j = 1,. . ., P. Secondly, x1 is strictly better than x2
in at least one objective, i.e., fj(x1) < fj(x2) for at least one j ∈ {1,. . .,
P}. As a result, in a set of Pareto-optimal solutions, there is no
solution which dominates another with respect to all the design
objectives involved. It should be noted that multi-objective opti-
mization needs a decision-making process as there is not a single
solution but a set of non-dominated solutions from which the best
should be chosen. That is, the major two tasks of multi-objective
optimization are to obtain a representative set of non-dominated
solutions and then select a suitable solution from this set based on
the specific criterion. In this study, the standard GA algorithm is
improved and extended to handle the target application, which is
essentially a multi-variable problem.

3.1. Problem formulation

Optimization objective is to reduce the losses of the system,
which are reflected by four parameters including the power losses
of ICE, generator, battery pack and the losses due to the battery life.
According to the above formulation, the set of objective functions
are chosen as:

f1(x) =
(

CR

CA

)1−u0(CR

CA
− 1

)u0

e−u1(CA/CR)RI2
b (10)

f2(x) = 1 − �ICE

�ICE
Pe/g (11)

f3(x) = (1 − �gen)Pe/g (12)

f4(x) = RI2
b (13)

It should be mentioned that due to the direct dependence of the
electric traction motor’s torque and speed on the driver commands
and road conditions, the power losses due to the components can
be ignored.

3.2. Archiving
The major function of the archive is to store a historical record of
the non-dominated solutions found along the heuristic search pro-
cess. The archive interacts with the generational population at each
iteration so as to absorb superior current non-dominated solutions

Table 6
Comparison of the results for the developed and thermostatic control strategy.

Fuel consumption
(l 100 km−1)

Battery energy
losses (kJ)

Battery life time
(no. of cycles)a

Developed controller 65.4 897 1843
Thermostat control 71.5 1352 1360

a This means that how many cycles batteries can work before failure of health.
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ig. 10. Tehran city bus driving cycle test results using developed control strategy.
ower. (d) ICE efficiency history. (e) Battery power loss. (f) SoC history.
nd eliminate inferior solutions currently stored in the archive. The
on-dominated solutions obtained at every iteration in the gener-
tional population are compared with the contents of archive in a
ne-per-one basis. A candidate solution can be added to the archive
f it meets any of the following four conditions:
ficiency map of the electric motor. (b) Electric motor output power. (c) ICE output
• There is no solution currently stored in the archive;
• The archive is not full and the candidate solution is not dominated

by or equal to any solution currently stored;
• The candidate solution dominates any existing solution in the

archive;
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ig. 11. Tehran city bus driving cycle test results based on thermostatic controller. (

The archive is full but the candidate solution is non-dominated
and is in a sparser region than at least one solution currently
stored.

During the heuristic multi-objective optimization process, the
ulti-objective optimization algorithm is attempting to build up a

iscrete picture of a possibly continuous Pareto front. Therefore it is
ften desired to distribute the solutions as diversely as possible on
he discovered tradeoff curve. Furthermore, the uniformity among
he distributed solutions is also crucial so as to achieve consistent
nd smooth transition among the solution points (when searching
or the preferred solution based on the particular requirements of
he target problem). Therefore, to accomplish these challenges, it
s necessary to preserve the diversity of the solutions distribution
uring the optimization process.

.3. Encoding scheme

It is significant to select the appropriate optimal variables for
he optimization process. The simplest way to implement a control

trategy for the power management of an HEV is to propose a set
f static thresholds, described in details in Table 2. The selected
ariables correlate closely with the fundamental vehicle operation.

In adopting GAs to the scheduling problem such as one dealt
n this paper, each chromosome represents a candidate solution
output power. (b) ICE efficiency history. (c) Battery power loss. (d) SoC history.

consisting of the following genes:

(HSoC, LSoC, Poff, Pch, tmoff) (13)

Each element in the chromosome is coded using a floating-point
number.

4. Performance simulation

In order to help with the simulation, design, and analysis of
the designed power-train, certain typical driving schedules have
been developed. These driving schedules represent typical traffic
conditions for a particular range of time. The optimization process
is operated using Tehran transit bus driving cycle shown in Fig. 8
[11]. The total test time for this cycle is 1800 s, the average speed is
9.61 km h−1 and the maximum speed is 50.11 km h−1. The distance
driven is approximately 4.81 km.

After watchful tuning, the settings of GA parameters in the sim-
ulation are as follows: number of generations is 432, population
size is 170, crossover probability is 87%, and mutation probability
is 1.5%.
In order to investigate the advantages, the developed control
strategy was implemented in Hybrid Electric Vehicle FEed-foRwarD
SIMulator (HEV-FERDSIM), developed in VFE research institute [12].
The simulation parameters for vehicle used and its components are
listed in Table 3. The battery SoC correction procedure is used to
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[11] M. Montazeri-Gh, Development of minibus and bus driving cycle for city of
M. Amiri et al. / Journal of Po

orrect the fuel economy for the case in which the initial and the
nal battery SoC are not the same [12].

An optimized control strategy called thermostatic (engine-
n–off) is used for comparison, illustrated in Fig. 9. The operation of
he engine/generator is totally controlled by the SoC of the battery
ack. When the SoC of the batteries reaches its predetermined high
alue, the engine/generator is turned off and the vehicle is driven
nly by the battery pack. On the other hand, when the SoC of the bat-
eries reaches its predetermined low value, the engine/generator is
urned on. The battery pack charges by the engine/generator. Thus,
he engine can always operate within its optimal region.

The control strategy parameters obtained through the GA opti-
ization are shown in Table 4, in addition to thermostatic control

trategy parameters. It should be noted that some design param-
ters are not directly derived from the optimization, but are cal-
ulated from other design parameters. Each control strategy must
e able to drive the mentioned transit bus, in such a way that the
inimum requirements of performance (i.e., Table 5), are satisfied.
Table 6 presents fuel consumption, battery energy losses and

attery life time for the developed and thermostatic controllers. As
t can be seen, not only the fuel consumption is decreased when
sing the developed controller, but also the battery energy losses
nd life are improved considerably.

Simulation results of the vehicle under the prescribed controller
olicy are shown in Fig. 10. The electric motor operating points
nd power output are presented in Fig. 10(a) and (b), respectively.
he ICE power output and its efficiency points during the cycle
re depicted in Fig. 10(c) and (d), respectively. As can be seen,
he operating points in Fig. 10(d) are close to the optimal region,
hich indicates that the ICE has been operating close to maximum
ossible efficiency.

The battery power losses and SoC history during the cycle are
hown in Fig. 10(e) and (f). It can be concluded that lower variation
f battery SoC during the cycle is the main reason of increasing of
he battery life.

In the case of using thermostatic controller in the simulation, the
attery power losses, SoC history, power output and efficiency are
hown in Fig. 11(a–d), respectively. As can be seen, the ICE is turned
ff most of the time and battery is fully discharged. Therefore, the
attery power losses increase in comparison to the developed con-
roller losses.
. Conclusions

A general control strategy for series HEVs has been proposed in
rder to optimize power-train efficiency based on the minimiza-

[

ources 190 (2009) 372–379 379

tion of the losses reducing battery life. As long as ICE efficiency
is high enough, there will be no need for charging or discharging
the batteries which is an inefficient process. This control strategy
has been evaluated in detail by means of validated simulations
of an HEV. Since the simulations have been performed based
on an existing vehicle, the intention of the authors is to make
experimental validations of the proposed techniques in the next
step. Because of its great importance in the vehicle control and
its inherent complexity, more study is required to address chal-
lenging technical issues of the algorithm and the whole control
strategy.
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